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Data Stream

¡ A data stream is an unbounded sequence 
of data arriving continuously.

¡ Streaming divides continuously flowing 
input data into discrete units for further 
processing.

¡ Stream processing typically requires:
¡ High volume data processing ability.

¡ Real-time data processing with low latency.

¡ Ability to efficiently recover from failures.
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Image source: https://www.ibmbigdatahub.com/blog/quick-reference-guide-technologies-and-applications-stream-computing

https://www.ibmbigdatahub.com/blog/quick-reference-guide-technologies-and-applications-stream-computing


Example: Social Media Stream Monitoring
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Image source: E6893 Big Data Analytics Lecture 7, CY Lin, Columbia University



Limitation of Stream Processing on Hadoop and Storm

¡ Using Hadoop (only) is suitable for processing batch data, but not quite suitable for 
processing stream data.
¡ Reason: High latency.

¡ Using Storm+Hadoop can tremendously reduce the latency (up to millisecond level).
However, there are other problems:
¡ Tends to loose “state” in data processing if a node running Storm goes down.
¡ Increases code size.
¡ Other issues.

¡ Apache Spark Streaming can overcome these limitations.
¡ But Storm still has lower latency than Spark.
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SPARK STREAMING
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Spark Streaming

• Spark Streaming is an extension of the core 
Spark API that enables scalable, high-
throughput, fault-tolerant stream processing 
of live data streams.

• Input: Data can be ingested from many 
sources like Kafka, Flume, Kinesis, or TCP 
sockets.

• Output: Processed data can be pushed out 
to filesystems, databases, and live 
dashboards.
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Image source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#discretized-streams-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Spark Streaming

• Input data streams are divided into batches based on time intervals (of a few seconds 
or sub-second).

• Each batch of data as RDDs and processes them using RDD operations.

• Processed results are pushed out in batches.
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Image source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#discretized-streams-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Streams and Batches

¡ Spark has provided a unified engine that natively supports both batch and streaming 
workloads.

¡ This lets users write streaming applications using a very similar API to batch jobs, and 
thus reuse a lot of the skills and even code they built for those. 



Goals of Spark Streaming

¡ Dynamic load balancing (small sized RDDs in DStreams).

¡ Fast failure recovery (“checkpointing” mechanism).

¡ Unification of batch, streaming and interactive analytics.

¡ Advanced analytics like machine learning and interactive SQL.

¡ Performance.
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Example: Network WordCount

¡ First, we import StreamingContext, which is the main entry point for all streaming 
functionality. 

¡ We create a local StreamingContext with two execution threads, and batch interval 
of 1 second.
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Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Example: Network WordCount

¡ Using this context, we can create a DStream that represents streaming data from a TCP source, 
specified as hostname (e.g. localhost) and port (e.g. 9999).

¡ This lines DStream represents the stream of data that will be received from the data server. Each 
record in this DStream is a line of text. Next, we want to split the lines by space into words.

11

Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Example: Network WordCount

¡ The words DStream is further mapped to a DStream of (word,1) pairs, which is then 
reduced to get the frequency of words in each batch of data. 

¡ Finally, wordCounts.pprint() will print a few of the counts generated every second.
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Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Example: Network WordCount

¡ Note that when these lines are executed, Spark Streaming only sets up the 
computation it will perform when it is started, and no real processing has started yet. 

¡ To start the processing after all the transformations have been setup, we finally call
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Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Example: Network WordCount
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Python script of network wordcount

¡ You will first need to run Netcat (a small utility found in 
most Unix-like systems) as a data server by call nc in
terminal.

¡ Then, any lines typed in the terminal running the Netcat
server will be counted and printed on screen every second. 

Results in Terminal

If this command doesn’t work,
try add --master local[2] here.



Example: Network WordCount
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¡ Jupyter Notebook doesn’t
support to run this
example.

¡ Call spark-submit to run
the python script on
terminal.
¡ If you linked PySpark with

Jupyter Notebook
previously, you should run

$unset PYSPARK_DRIVER_PYTHON



DSTREAM
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DStream

¡ Discretized Stream (DStream) is the basic abstraction provided by Spark Streaming.

¡ It represents a continuous stream of data:
¡ either the input data stream received from source, 

¡ or the processed data stream generated by transforming the input stream. 

¡ Internally, a DStream is represented by a continuous series of RDDs.

¡ Each RDD in a DStream contains data from a certain interval.
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Image source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#discretized-streams-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


DStream

¡ Any operation applied on a DStream translates to operations on the underlying RDDs. 
¡ For example, the flatMap operation is applied on each RDD in the lines DStream to generate the RDDs of 

the words DStream. 
¡ These underlying RDD transformations are computed by the Spark engine. 

¡ The DStream operations hide most of these details and provide the developer with a higher-level API for convenience. 

¡ Again, you don’t need to care about how transformations are applied to streaming data.
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Image source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#discretized-streams-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Input DStream

¡ Input DStream is a DStream representing the 
stream of input data from streaming source.

¡ A receiver object is associated with every 
input DStream object.

¡ Receivers receive the data from a source and 
stores it in Spark’s memory for processing.

¡ Two types of built-in streaming sources:
¡ Basic sources (file systems, and socket 

connections).

¡ Advanced sources (Kafka, Flume, Kinesis).
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Image source: https://zhuanlan.zhihu.com/p/103818677
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TRANSFORMATIONS ON DSTREAMS
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Transformations on DStreams

¡ Stateless transformations.

¡ Stateful transformations.
¡ updateStateByKey() operation.

¡ Window operations.
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Stateless Transformations
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¡ Stateless transformations are similar to that of RDDs applied on every batch 
(meaning every RDD in a DStream).
¡ Common RDD transformations: map(), filter(), reduceByKey() etc.

¡ Key-Value RDD transformations: cogroup(), join(), leftOuterJoin() etc.

¡ Performing these operations on DStreams is equivalent to performing underlying 
RDD operations on each batch.
¡ The only difference is that it is applied to a DStream or a DStream pair.



Stateless Transformations
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Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Stateless Transformations
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Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Transform Operation

¡ The transform operation allows arbitrary RDD-to-RDD functions to be applied on a 
DStream. 

¡ It can be used to apply any RDD operation that is not exposed in the DStream API. 
¡ For example, the functionality of joining every batch in a data stream with another dataset is not 

directly exposed in the DStream API.
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Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Stateful Transformations

¡ Stateful transformations are operations on DStreams that track data across time.

¡ Thus it makes use of some data from previous batches to generate the results for a 
new batch.

¡ Two main types:
¡ updateStateByKey() operation.

¡ Windowed operations.
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updateStateByKey() Operation

¡ The updateStateByKey() operation allows you to maintain arbitrary state while 
continuously updating it with new information. 

¡ To use this, you will have to do two steps.
¡ Define the state: The state can be an arbitrary data type.

¡ Define the state update function: Specify with a function how to update the state using the 
previous state and the new values from an input stream.

¡ In every batch, Spark will apply the state update function for all existing keys, 
regardless of whether they have new data in a batch or not. 
¡ If the update function returns None then the key-value pair will be eliminated.
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updateStateByKey() Operation

¡ Let’s illustrate this with an example. Say you want to maintain a running count of each word seen in a text data 
stream. Here, the running count is the state and it is an integer. We define the update function as:

¡ This is applied on a DStream containing words (say, the pairs DStream containing (word,1) pairs in the earlier 
example).
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Example: Stateful Network WordCount
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Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

Note that using update
StateByKey() requires 
the checkpoint directory to 
be configured.

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Example: Stateful Network WordCount
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Windowed Operations

¡ Windowed operations apply transformations over a sliding window of data.
¡ It is useful when you want to track a period (e.g. Tweeter topics in the latest 24 hours).
¡ Two parameters must be included:

¡ Window length: The duration of the window (3 in the figure).
¡ Sliding interval: The interval at which the window operation is performed (2 in the figure).

31

Image source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Windowed Operations

¡ Now, we only want to keep the word counts over the last 30 seconds of data, in every 
10 seconds period. 

¡ This is done using the operation reduceByKeyAndWindow().
¡ It applies the reduceByKey() operation on the pairs DStream of (word,1) pairs over the last 30 

seconds of data. 

32

Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Windowed Operations

¡ Some of the common window operations are as follows. 
¡ All of these operations take the said two parameters - windowLength and slideInterval.
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Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Windowed Operations

¡ Some of the common window operations are as follows. 
¡ All of these operations take the said two parameters - windowLength and slideInterval.
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Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Example: Windowed Network WordCount
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windowLength=10 and slideInterval=5

Refresh for
every 5 seconds.

Only accumulate
for the latest 10
seconds.



Spark Streaming Programming Model

¡ Create input DStream.

¡ Define operations (transformations and output) on DStreams.

¡ Use streamingContext.start() to start accepting and processing data.

¡ Use streamingContext.awaitTermination() to waiting for termination (manually 
or by incidents).

¡ You may use streamingContext.stop() to manually stop the data processing.
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Output Operations

¡ Output operations allow DStream’s data to be pushed out to external systems like a 
database or a file systems.
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Checkpointing

¡ A streaming application must operate 24/7 and hence must be resilient to failures 
unrelated to the application logic. 

¡ For this to be possible, Spark Streaming needs to checkpoint enough information to a 
fault-tolerant storage system such that it can recover from failures. 

¡ There are two types of data that are checkpointed:
¡ Metadata checkpointing: Saving of the information defining the streaming computation to fault-

tolerant storage like HDFS. It is primarily needed for recovery from driver failures.

¡ Data checkpointing: Saving of the generated RDDs to reliable storage. It is necessary for basic 
functioning if stateful transformations are used.
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When to Enable Checkpointing

¡ Checkpointing must be enabled for applications with any of the following requirements:
¡ Usage of stateful transformations: If either updateStateByKey or reduceByKeyAndWindow is 

used in the application, then the checkpoint directory must be provided to allow for periodic RDD 
checkpointing.

¡ Recovering from failures of the driver running the application: Metadata checkpoints are used to 
recover with progress information.

¡ Note that simple streaming applications without the aforementioned stateful 
transformations can be run without enabling checkpointing. 
¡ This is often acceptable and many run Spark Streaming applications in this way.

¡ You can think that stateless transformations are less important to make it fault tolerant.
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How to Configure Checkpointing

¡ Checkpointing can be enabled by setting a 
directory in a fault-tolerant, reliable file 
system (e.g., HDFS) to save the checkpoint 
information. This is done by 
¡ When the program is being started for the first 

time, it will create a new StreamingContext, 
set up all the streams and then call start().

¡ When the program is being restarted after 
failure, it will re-create a StreamingContext
from the checkpoint data in the checkpoint 
directory.
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Conclusion

After this lecture, you should know:
¡ What is a data stream.

¡ What analytics solution can be made from data stream.

¡ How does Spark Streaming handle data stream.

¡ What is DStream.

¡ What is the difference between stateless and stateful transformations.
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Thank you!

Reference:
¡ Spark Streaming Official Guide: http://spark.apache.org/docs/latest/streaming-programming-

guide.html.
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